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1. INTRODUCTION
Dynamic stochastic general equilibrium (DSGE) models have become a standard tool in macroe-

conomics both for forecasting and policy analysis simulations in the last decade. Two versions

of DSGE models are predominantly used in the literature: (a) linear DSGE (L-DSGE) mod-

els, see Erceg et al. (2000), Christiano et al. (2001), Amato and Laubach (2003), Dib (2003),

Smets and Wouters (2003) or Adolfson et al. (2007), Altig et al. (2011), among others; and (b)

Markov-switching DSGE (MS-DSGE) models3, see Davig and Leeper (2005), Sims and Zha

(2006), Davig (2007), Liu et al. (2009), Chen and MacDonald (2012), Bianchi (2013), or Foer-

ster (2013), among others. The main advantage of MS-DSGE models is that they can capture

empirically observed phenomena without breaking theoretical concepts or imposing unrealistic

assumptions. For example, Davig (2007) examines the implications of changing the slope of

the Phillips curve for optimal discretionary monetary policy. He shows that significant instability

in the inflation rate if the slope parameter of the Phillips curve is subject to Markov switching.

Optimal monetary policy is computed subject to the Markov-switching Phillips curve under both

ad-hoc and utility-based welfare criteria. The utility-based criterion instructs monetary policy to

disregard the switching effect of the Phillips curve and keeps the interest rate constant across

regimes. This stands in contrast to the standard rules, which advises monetary policy to change

the rates according, regardless of the slope parameter. Note that this type of issues cannot be

addressed in linear DSGE models. The main disadvantage of MS-DSGE models is that indi-

vidual modelling steps (e.g. estimation) are computationally intensive as compared to linear

counterparts.4

Therefore, the ultimate question for applied researchers is which DSGE model should be used

in practice: a linear or a Markov-switching DSGE model? This question is of much practical

importance since any model misspecification may lead to misleading inference (e.g. hypothesis

testing, impulse-response functions, forecast error variance decompositions, point and interval

forecasts, etc.) and serious mistakes in economic policy (e.g. setting the interest rate, etc.).

Until now, the choice about the functional form of DSGE models has been made based on an

ad-hoc decision. The main task of this article is to fill the gap in the literature and assess formal

test statistics, which can be used to test for linear and Markov-switching DSGE models.
3Note that there exists other forms of non-linear DSGE models based on a higher-order Taylor approximation

of equlibrium conditions, see Schmitt-Grohe and Uribe (2004) or Rudebusch and Swanson (2008), among others.
However, MS-DSGE models have become very popular and widely used in empirical macroeconomics. Therefore,
we restrict our attention to this particular class of non-linear DSGE models. However, it is worth noting that the test
stattistics discussed later on in the paper might have power against other non-linear DSGE models as well.

4For instance, Psaradakis and Sola (1998) show that the MLE method of Markov-switching autoregressive mod-
els performs poorly in finite sample. Therefore, some jackknife- or bootstrap-based bias correction method is nec-
essary to implement. This method is, however, computationally intensive in multivariate models. Another problem
is to find non-restrictive and easy-to-check determinacy conditions for multivariate Markov-switching type models,
compare the results in Cho (2011), based on a concept of mean-square stability, and ?, based on a concept of
bounded stability.
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There are two contributions of this paper to applied economic modelling. First, it is shown, using

Monte Carlo experiments based on simplified, yet realistic, DSGE models, that the (principal

component based) multivariate TSAY and ARCH tests do exhibit good size properties against

linear VAR/DSGE models and power properties against Markov-switching VAR/DSGE models

even in small samples usually observed in empirical macroeconomics. Second, strong empiri-

cal evidence against linear VAR/DSGE models is found for US economic variables.

The paper is organized as follows. A brief description of principal component based multivariate

non-linearity TSAY and ARCH tests is given in Section 2. Monte Carlo setup and results are

presented in Sections 3 and 4. An empirical application is provided in Section 5.

2. MULTIVARIATE NON-LINEARITY TESTS

2.1 THE NULL AND ALTERNATIVE HYPOTHESIS

Before we proceed to a testing procedure, we state assumptions about stochastic processes

under consideration.

Uhlig (1995) shows that a standard linear DSGE model can be written into the following state-

space representation

yt = A(ω)Et(yt+1) + B(ω)yt−1 + C(ω)xt, (1a)

xt = Rxt−1 + εt, (1b)

where yt is a vector of dependent variables, xt a vector of exogenous variables (shocks), and

A(ω), B(ω), C(ω), R are matrices of (structural) parameters and ω is a vector of structural

(deep) parameters.5 It can be shown that under mild conditions, (1) can be further simplified

into the form of a VAR(2) model given by

yt = Φ1(ω)yt−1 + Φ2(ω)yt−2 + Θ(ω)εt, (2)

where Φ1(ω), Φ2(ω) and Θ(ω) denote reduced-form parameter matrices. Therefore, without

loss of generality, a VAR(P ) model can be consider under the null hypothesis. The null hypoth-

esis is stated in the following assumption.6

5For instance, ω contains parameters such as habit formation, risk aversion, price indexation, etc.
6It is worth noting that not all economic model can be written into a VAR representation. We do not consider this

type of models in this paper. However, it is possible to modify the proposed testing procedure to capture this type of
models as well.
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Assumption 1 Let us assume the following stationary real-valued finite-order linear VAR model

under the null hypothesis

yt = ξ0 +

P∑
i=1

ξiyt−i + Σat, (3)

where yt denotes a (k × 1) vector, {at : t ∈ Z} is a sequence of multivariate WN(0,I) such that

E‖at‖4 <∞. Let β = (ξ′0, vec(ξ1)
′, . . . , vec(ξp)

′)′ be a (k2P + k × 1) parameter vector, which is

assumed to lie in the interior of the parameter space given by

B = {β ∈ Rk
2P+k : det(I−

P∑
i=1

ξiz
i) 6= 0 for all |z| ≤ 1}.

�

The assumption ensures that a given linear process is stationary, parameters do not lie on the

boundary, and all moment conditions are satisfied. These conditions are sufficient to ensure

consistency of the estimated parameters in β, the estimated residuals, and subsequently, the

non-linearity test statistics.

Special attention is paid to a Markov-switching DSGE model under the alternative hypothesis

only. Cho (2011) shows that a MS-DSGE model can be formally written as follows

yt = A(ωSt,St−1)Et(yt+1) + B(ωSt,St−1)yt−1 + C(ωSt,St−1)xt, (4a)

xt = Rxt−1 + εt, (4b)

where yt is a vector of dependent variables, xt a vector of exogenous variables shocks, and

A(ωSt,St−1), B(ωSt,St−1), C(ωSt,St−1) are matrices of structural (deep) parameters subject to

Markov switching, whereas R is a matrix of fixed parameters.7 St denotes the first-order time-

homogenous hidden Markov chain defined on a discrete space with constant (irreducible and

aperiodic) transition probabilities. Cho (2011) points out that the closed-form solution of the

model, if it exists, can be written into the form of a state-space representation, and, subse-

quently, into the form of a MS-VAR(2) model given by

yt = Φ1(ωSt,St−1)yt−1 + Φ2(ωSt,St−1)yt−2 + Θ(ωSt,St−1)εt, (5)

where Φ1(ωSt,St−1), Φ2(ωSt,St−1) and Θ(ωSt,St−1) denote the regime-dependent reduced-form

parameter matrices. Therefore, without loss of generality, a Markov-switching VAR(P ) model
7Note that the fact that the vector of deep parameters ω is effected by both St and St−1 is caused by intertemporal

optimization of agents in the model.
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can be consider under the alternative hypothesis without loss of generality. The alternative hy-

pothesis is stated in the following assumption.8

Assumption 2 Let us assume the following stationary real-valued finite-order Markov switching

VAR model under the alternative hypothesis

yt = ξ0(st) +

P∑
i=1

ξi(st)yt−i + Σ(st)at, (6)

where yt denotes a (k × 1) vector, {at : t ∈ Z} is a sequence of multivariate WN(0,I) inno-

vations such that E‖at‖4 < ∞ and st denotes the first-order time-homogenous hidden Markov

chain defined on a discrete space {1, . . . , q} with constant (irreducible and aperiodic) transition

probabilities P = [pij ], for i, j ∈ {1, . . . , q}. Let β(st) = (ξ0(st)
′, vec(ξ1(st))

′, . . . , vec(ξp(st))
′)′

be a (k2P + k × 1) parameter vector for st ∈ {1, . . . , q}, and β = (β(1)′, . . . ,β(q)′)′, which is

assumed to lie in the interior of the parameter space given by

B = {β ∈ Rq(k
2P+k) : ρ(Ψ) < 1},

where ρ(Ψ) denotes a spectral radius of the matrix Ψ = [pjiD(st = j) ⊗D(st = j)], for i, j ∈
{1, . . . , q} and

D(st) =


ξ1(st) ξ2(st) · · · ξP−1(st) ξP (st)

I 0 · · · 0 0

0 I · · · 0 0

0 0 · · · I 0

 .

�

Although model builders are particularly interested in non-linearity in the structural (i.e. first-

order) equations (e.g. see matrices A(ωSt,St−1), B(ωSt,St−1), C(ωSt,St−1) in (4a)), we focus on

testing for non-linearity in the reduced-form models. There is a good reason for doing so. It is

not possible to consider the functional form of the model in (1) under the null hypothesis when

testing for non-linearity since the Et(yt+1) term is not observed and the neglected non-linearity

tests (i.e. TSAY and ARCH) are considered in this paper.9

8For the notational simplicity, Assumption 2 is based on the switching variable st = (St, St−1), where St denotes
the first-order time-homogenous hidden Markov chain defined on a discrete space with constant (irreducible and
aperiodic) transition probabilities. For example, a two state (regime) Markov chain for St implies a four state (regime)
Markov chain for st = (St, St−1).

9The author thanks Professor Adrian Pagan from the University of Sydney for bringing my attention to this point.
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2.2 WHY NEW MULTIVARIATE TESTS?

Two problems immediately arise when testing for non-linearity in multivariate dynamic stochas-

tic processes in practice. First, although there exists many different univariate non-linearity test

statistics, there are only a few multivariate tests available in the literature. Main attention is paid

to statistical properties of the multivariate TSAY and ARCH tests. Our choice of the statistics

is based on the fact that the functional form of the reduced-form model under the alternative

hypothesis, see equation (4a)), contains non-linearity in the conditional mean (i.e. Φ1(ωSt,St−1)

and Φ2(ωSt,St−1)), which motivates the use of the TSAY test, and conditional volatility (i.e.

Θ(ωSt,St−1)), which motivates the use of the ARCH test.

Second, those existing multivariate tests often suffer from the dimensionality and multicollinear-

ity problems. In order to make this point clear, let us consider a multivariate version of the TSAY

(MTSAY) test proposed by Harvill and Ray (1999). The test is based on running the following

auxiliary equation

ât = b0 + B1zt + B2vt + ut, (7)

where ât is a (k×1) vector of residuals from a particular VAR(P ) model in (3), zt = (y′t−1, . . . ,y
′
t−P )′

denotes a (kP ×1) vector of aggregated predetermined variables, vt = vech(zt⊗z′t) represents

an (s × 1) vector of predetermined variables consisting of all square- and cross-product ele-

ments (s = kP (kP + 1)/2). b0 denotes a (k× 1) vector of constants, B1 represents a (k× kP )

matrix of parameters, and finally, B2 is a (k × s) matrix of parameters. The null hypothesis of

linearity of the vector yt is given by: H0 : B2 = 0 versus H1 : B2 6= 0.

The dimensionality problem: due to the construction of the test, the vector vt = vech(zt ⊗ z′t)

contains a large number of cross- and square-terms. As a result, the original MTSAY test re-

quires a large number of observations. It is clear from the dimension of the vt vector that, for

a given set of k variables and the lag order P of a VAR filter under the null hypothesis, the test

requires T > kP (kP + 1)/2 observations. For example, consider a small model consisting of

k = 10 economic variables and the moderate lag order P = 4 of a VAR model, the original MT-

SAY test requires T > 820 observations, which is infeasible to get in applied macroeconomics.

The multicollinearity problem: terms in the vector vt are highly collinear, which increases

the degrees of freedom of the limiting distribution of a given test statistic, and thus, the critical

values for rejecting the null hypothesis of linearity, but actually does not improve the fit in (7).

As a result, multicollinearity in the vector vt can reduce the power of the multivariate tests even

further.

As explained in Vávra (2013), both drawbacks of the multivariate non-linearity tests can be
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bypassed using a principal component analysis. The author shows, using extensive Monte

Carlo experiments, that the principal-component based multivariate TSAY and ARCH tests do

offer a remarkable dimensionality reduction (in average about 70 %) without any systematic

power distortion. For this reason, the principal component based multivariate TSAY and ARCH

tests are implemented in this paper.10

2.3 MULTIVARIATE TSAY TEST

The modified multivariate TSAY test is based on running the following auxiliary equation

ât = c0 + C1zt + C2wt + ut, (8)

where ât is (k × 1) a vector of residuals from the filter in (3), c0 is a (k × 1) vector of constants,

C1 is an appropriate (k × kP ) matrix of coefficients, and wt is a (n × 1) vector of principal

components such that k ≤ n ≤ s.11 The principal components are calculated from the original

vector vt = vech(zt⊗z′t), where zt = (y′t−1, . . . ,y
′
t−P )′ denotes a (kP ×1) vector of aggregated

predetermined variables, using the (Pearson) correlation matrix. The null hypothesis about

linearity of the vector yt is given by: H0 : C2 = 0 versus H1 : C2 6= 0. The appropriate LR

based test statistic is given by

MTSAY = (T − τ)(log(|Σr|)− log(|Σu|))
d−→ χ2(nk), (9)

where | · | denotes the determinant of a square matrix, T stands for the sample size, τ =

(k + n + 1)/2 is a small sample correction term recommended by Anderson (2003, p. 321-3),

where k is the number of variables, and n represents the number of principal components. The

author argues that the small sample correction works well, provided that k2 + n2 < T/3. Note

that the model in (8) can be easily estimated by a multivariate LS method, see Lütkepohl (2005,

Ch. 3) for details. The proof of the limiting distribution can be found in Anderson (2003, Ch.

8.5).

2.4 MULTIVARIATE ARCH TEST

It can be shown that the original multivariate ARCH test suffers from the same problems as the

TSAY test, see Vávra (2013) for details. Therefore, the modified principal component based

multivariate ARCH test is considered here as well. The test is based on running the following
10It is worth noting that some other tests can be used as well. For example, Professor Adrian Pagan recommended

to apply the multivariate RESET tests. It can be concluded from the Monte Carlo results not reported later on in this
paper that both multivariate TSAY and RESET tests produce similar results.

11In practice, the maximum number of principal components s might be restricted to run the test. For example,
we set s = min{[T/2], kP (kP + 1)/2}, where [·] denotes the integer part and kP (kP + 1)/2 the number of orginal
additional variables in the vector vt.
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auxiliary equation

diag(ât ⊗ â′t) = c0 + C1wt + ut, (10)

where diag(ât ⊗ â′t) is a (k× 1) vector of diagonal elements, c0 is a (k× 1) vector of constants,

C1 is an appropriate (k × n) matrix of coefficients, and wt is an (n × 1) vector of principal

components, such that k ≤ n ≤ s.12 The principal components are calculated using the (Pear-

son) correlation matrix of the original vector vt = (vech(ât−1 ⊗ â′t−1)
′, . . . , vech(ât−Q ⊗ â′t−Q)′)′

denotes an (s × 1) vector of all the predetermined variables of the test. The null hypothesis

of homoscedasticity of the vector at, is given by: H0 : C1 = 0 versus H1 : C1 6= 0. The

appropriate LR-based test statistic is given by

MARCH = (T − τ)(log(|Σ̂r|)− log(|Σ̂u|))
d−→ χ2(nk), (11)

where | · | denotes the determinant of a square matrix, Σ̂r and Σ̂u represent the estimated

variance-covariance matrix of the restricted model, unrestricted model respectively, T is the

sample size, τ = (k + n + 1)/2 is a small sample correction term recommended by Ander-

son (2003, p. 321-3), where k is the number of variables, and n represents the number of

principal components. He argues that the small sample correction works well, provided that

k2 + n2 < T/3. Note that the model in (10) can be easily estimated by a multivariate LS

method, see Lütkepohl (2005, Ch. 3) for details. The proof of the limiting distribution can be

found in Anderson (2003, Ch. 8.5).

It is worth noting that our specification of the multivariate tests, based on the LR principle,

is motivated by Harvill and Ray (1999), who consider the F-test based on the Wilks lambda

statistic. It can be argued (e.g. Godfrey (1988, Ch. 2)) that for linear regression models such

as (8) and (10), the LR-based tests are slightly more powerful as compared to the LM-based

tests. In addition, both the LR and LM-based tests are computed in the same way (using the

auxiliary equations) in this particular case and have the same limiting distribution, see Davidson

and MacKinnon (1999, p. 423–428).13 Although the LM-based test statistics are slightly more

preferred, it is important to point out that there are many other applications of the LR tests in

the multivariate time series literature, see Hamilton (1994, p. 296-298, 648-650) for additional

examples.

12The maximum number of principal components s might be restricted as in the previous case, see Footnote 9
13The LM-based test for multivariate systems is discussed in Deschamps (1993). Monte Carlo comparison of

both LM and LR-based tests for multivariate systems can be found in Deschamps (1996).
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2.5 PRINCIPAL COMPONENT ANALYSIS

Although a principal component analysis can reduce, or even completely eliminate, the dimen-

sionality problem, there is still an ultimate question of how many components to retain. There-

fore, some comments on the basics about principal component analysis are in order. A princi-

pal component analysis (PCA) is concerned with explaining the variance-covariance/correlation

structure of the original variables by a few components, which are linear combinations of the

original variables. It is important to point out that there is no one-to-one mapping between

the roots calculated from the variance-covariance matrix and the correlation matrix. A problem

is that, unlike the correlation matrix, the variance-covariance matrix is not scale invariant and

hence, neither the calculated roots. Therefore, comfortable or not, the use of the correlation

matrix is often recommended, especially for heterogenous data sets and/or indicators originally

measured in different units, see Jackson (1991, p. 64–65) for details. For this reason, the

correlation matrix is used in this paper unless otherwise stated. One of the main advantages

of using PCA is that the calculated principal components are uncorrelated linear combinations

of the original variables due to orthogonality of the estimated eigenvectors. The advantage of

this feature is that principal components eliminate multicollinearity from a testing procedure.

Formally, the principal components are defined as follows

wjt = e′jvt, for j = 1, . . . , s, t = 1, . . . , T, (12)

where wjt is the jth-principal component at time t, ej is a particular eigenvector associated with

the eigenvalue λj estimated from the variance-covariance or correlation matrix. For instance,

vt takes the following form for the MTSAY test based on a VAR(P ) filter

vt = vech(zt ⊗ z′t),

where zt = (y′t−1, . . . ,y
′
t−P )′ is a vector of predetermined variables. Obviously, the vector vt

for the MARCH test is defined in a similar way, see Section 2.4.

The number of principal components to retain is determined by the so called stopping rules.

These can split into four basic categories: (i) purely statistical rules (e.g. a Bartlett test); (ii)

graphical rules (e.g. a scree plot); (iii) rule-of-thumb stopping rules; and finally (iv) bootstrap-

based rules. The interested reader is referred to Peres-Neto et al. (2005) for a comprehensive

survey. Among those rules successfully applied in the literature, the following three are imple-

mented in this paper:14

1. The information criterion rule: The number of principal components can be determined

using an automatic selection procedure based on minimizing an appropriate information
14See Vávra (2013) for arguments why not to implement more sophisticated stopping rules in the context of

non-linearity testing.
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criterion. Blake and Kapetanios (2003) show, using Monte Carlo experiments, that the

BIC approach produces superior results as compared to other methods considered in

their paper.

2. The variance rule: Another popular way of selecting the number of principal components

is to use the first n components attributing 100η% of total variance of the original set of

variables. The usually recommended proportion of total variance in multivariate analysis

is η = 0.9.

3. The Kaiser rule: This rule is based on the fact that the average root calculated from the

correlation matrix is equal to 1. For this reason, the rule suggests to retain all the first

eigenvalues larger than 1.

Note that the testing procedure cannot be carried out if no principal component is chosen by the

stopping rule. We, therefore, do not consider this case and start with a minimum of k principal

components for the multivariate tests.

3. MONTE CARLO SETUP
The statistical properties of the principal component based multivariate non-linearity TSAY and

ARCH tests are assessed via Monte Carlo experiments using simple, yet realistic, DSGE mod-

els. Each model describes the behaviour of three agents in the economy (i.e. households,

firms, and government). The closed-form of the model consists of three equations (variables):

the aggregate demand (the Euler equation) equation (output, denoted as y), the aggregate

supply (the New Keynesian Phillips curve) equation (the inflation rate, denoted as π), and the

monetary policy rule (the interest rate, denoted as r). The size properties of the tests (i.e. the

null hypothesis of linearity is true) are assessed using a simple linear DSGE model, denoted

as “L”, whereas the power properties (i.e. the alternative hypothesis is true) are examined us-

ing two Markov-switching DSGE models, denoted as “MS1” and “MS2”. In particular, MS1 is

a Markov-switching DSGE model where only parameters of the monetary policy rule are sub-

ject to a change, whereas MS2 is a model where both the monetary policy parameters and

the Phillips curve parameters are subject to a change. Put differently, the MS1 model is a

model with dominance of linear structural equations (2 equations are linear 1 equation is non-

linear), whereas the MS2 model is a model with dominance of non-linear structural equations

(2 equations are non-linear 1 equation is linear). Using this model configuration, one can eas-

ily check the robustness of the above mentioned multivariate tests against different degree of

non-linearity in the structural equations. A complete description of linear and Markov-switching

DSGE models can be found in Appendix A.

Note that variables in DSGE models are assumed to be deviations from steady-states, whereas

the growth rates (first differences) are usually used when testing for non-linearity in (non-
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stationary) economic indicators.15 In order to check the robustness of the multivariate tests

against the data transformation, the following set of data transformations is considered for a

given vector of variables (the inflation rate π, output y, the interest rate r) in this paper: (a)

“transformation 1” denotes variables expressed as deviations from steady-states – (the infla-

tion gap π̂, the output gap ŷ, the interest rate gap r̂); (b) “transformation 2” denotes variables

expressed as a mix of deviations from steady-states and the growth rates (first differences) –

(the inflation gap π̂, the growth rates of output ∆ŷ, the interest rate gap r̂); (c) “transformation 3”

denotes variables expressed as the growth rates and/or first differences – (the first difference of

the inflation rate ∆π̂, the growth rate of output ∆ŷ, the first difference of the interest rate ∆r̂).16

All model innovations are drawn from a multivariate Gaussian distribution with zero means and

unit variances.17 The sample size is set to T ∈ {150, 300} and the number of repetitions is set to

R = 1, 000.18 The number of principal components is determined using the above defined stop-

ping rules (i.e. BIC, variance, Kaiser). Principal components are calculated from the Pearson

correlation matrix. The following notation is used for the principal component based multivariate

tests: (i) “M(BIC)” stands for the multivariate test (i.e. ARCH or TSAY) with the automatically

selected number of principal components n using the BIC approach; (ii) “M(0.9)” denotes the

multivariate test with the number of components determined by the variance rule with the cutoff

0.9; (iii) “M(K)” is the multivariate test with the number of components determined by the Kaiser

(root) rule with the cutoff 1.0.

In order to compare the performance of the principal component multivariate tests, the results

from the standard univariate TSAY and ARCH test statistics are reported as well. A description

of these univariate tests can be found in Tsay (1986) and Engle (1982). Automatic lag order

selection procedure proposed in Ng and Perron (2005) is implemented to determine the lags of

both AR and VAR models to filter out the conditional mean.

4. MONTE CARLO RESULTS
The Monte Carlo results are presented in Tables 1–2 in Appendix D. The tables present the av-

erage rejection frequency of both the univariate and multivariate non-linearity tests. The results
15For instance, the output gap is used in DSGE models, whereas the real GDP growth rates are used when testing

for non-linearity.
16Note that the first difference of a deviation of real output from the steady state (i.e. ∆ŷt) is equivalent to the

growth rate of real output (i.e. ∆ log yt), provided that the constant growth rate of the steady-state of real output is
considered. The same analogy holds for the interest rate and the inflation rate as well.

17Our choice is based on arguments in Vávra (2013) who shows that the size and power properties of the principal
component based multivariate TSAY and ARCH tests are insensitive to the configuration of the variance-covariance
matrix of model innovations.

18For example, Smets and Wouters (2007) use the data set spanning the period 1966Q1 – 200Q4 (i.e. 156 obser-
vations), Liu and Mumtaz (2011) use the data set spanning the period 1970Q1 – 2009Q1 (i.e. 157 observations),
among others.
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reveal the following: (i) Both univariate and multivariate ARCH tests have a good size even in

small samples (i.e. T = 150). Nevertheless, the multivariate TSAY tests are systematically

slightly oversized, whereas the univariate TSAY tests are slightly downsized. However, a size

distortion is not of the magnitude to disqualify either of the tests from using them. Put differ-

ently, both univariate and multivariate non-linearity tests do produce good results, provided that

a model is linear; (ii) The power results of both multivariate TSAY and ARCH tests are very

good even in small sample (i.e. T = 150) and are insensitive to the data transformation. The

power of the principal component multivariate tests improves significantly with the number of

non-linear structural equations in the model and as the sample size T increases. For example,

the average rejection frequency of the principal component based MTSAY (MARCH) test for

the MS2 model ranges from 0.58 to 0.87 (from 0.74 to 0.87) in the sample T = 150, depending

on the stopping rule and the data transformation; (iii) The average number of principal com-

ponents determined by individual rules ranges from 3 to 9. From this point of view, the Kaiser

rule might be preferred because of a very intuitive setup and its simplicity; (iv) The univariate

tests do suffer from a high power variation and a systematic power loss as compared to their

multivariate counterparts. What is more, the multivariate tests do produce superior results as

compared to the univariate tests in almost all cases.

5. SENSITIVITY ANALYSIS
In order to avoid criticism that the Monte Carlo results are based on a particular model param-

eter configuration, a sensitivity analysis is conducted. A standard sensitivity analysis approach

is implemented, which means that one parameter is subject to a change, whereas the other

model parameters are kept constant and set to their benchmark values. Special attention is

paid to the MS1 model configuration (i.e. only the policy rule parameters are subject to Markov-

switching).19 We consider the following two parameter configurations:

(i) The parameter φy(St) ∈ {0.5, 0.1} is kept constant, whereas

φp(St) ∈ {(1.50, 1.0), (1.75, 1.0), (2.00, 1.0), (2.25, 1.0), (2.50, 1.0)};

(ii) The parameter φp(St) ∈ {2.0, 1.0} is kept constant, whereas

φy(St) ∈ {(0.3, 0.1), (0.4, 0.1), (0.5, 0.1), (0.6, 0.1), (0.7, 0.1), (0.8, 0.1)}.

All other model parameters take their benchmark values as described in Appendix C. We focus

on the behaviour of the multivariate tests with the number of principal components determined

by the Kaiser stopping rule (i.e. MTSAY(K) and MARCH(K)). The sensitivity results, based

on data transformation 2 (see Section 3), are presented in a graphical form in Figure 1. Al-
19Similar results are obtain for the MS2 model as well. The results are available from the author upon request.
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though the MARCH test is slightly more powerful as compared to the MTSAY test, the power of

both multivariate tests is highly robust against variation in the monetary policy rule parameters

φp(St) and φy(St). Interestingly, the rejection frequencies of the multivariate tests are similar

for both parameter configurations. For example, the rejection frequency of the MARCH(K) test

is around 0.5 for both parameter configurations.

Figure 1: Sensitivity analysis of the multivariate tests: T = 150
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Note: “MTSAY(K)” and “MARCH(K)” denote the principal component based multivariate test with the number of
components selected automatically by the Kaiser rule.

6. EMPIRICAL ANALYSIS
In this section, the univariate and principal component based multivariate TSAY and ARCH

tests are applied to a set of US quarterly economic variables:20 the growth rate of real GDP

(Y), the growth rate of real consumption (C) and the growth rate of real investment (I), the

CPI inflation rate (P), the 3M treasure bill rate (R), the growth rate of nominal hourly wage

(W) and growth rate of hours worked (L).21 In order to check the robustness of the results

against the size of the model (i.e. the number of economic variables in the model), three dif-

ferent combinations of variables are considered: (1) y = (Y, P,R)′; (2) y = (Y, P,R,W,L)′; (3)

y = (P,R,W,L,C, I)′.22 All variables span the period 1961Q1 to 2010Q4 (i.e. T = 200 obser-

vations). Following Assumption 1, a linear VAR/DSGE model23 is considered as an adequate

model under the null hypothesis.24 As explained in Section 2, both TSAY and ARCH test require

the specification of lag orders P and Q. The automatic lag order selection procedure recom-
20All relevant variables are seasonally adjusted.
21Note that the growth rate is defined as the log-difference.
22A similar data set is considered in Smets and Wouters (2007).
23Only for simplicity, a DSGE model is assumed to be exactly identified, which means that the same number of

shocks as the number of dependent variables is considered in this exercise.
24A simple AR model is considered for univariate tests.
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mended by Ng and Perron (2005) is implemented here. The procedure indicates P ∈ {3, 4} for

the multivariate TSAY tests and Q = 2 for multivariate ARCH tests, depending on the sub-set

of variables. The maximum number of principal components is restricted to s = T/2 = 100.

We are interested in answering the following two questions: (i) ”Is a linear VAR/DSGE model

adequate for the selected groups of the US economic variables?”; (ii) ”How similar are the re-

sults obtained from the univariate and multivariate non-linearity tests when using the selected

groups of the US economic variables?”

The results are presented in Table 3. The table presents the estimated p-values of both uni-

variate and multivariate tests for various sub-sets of US variables. The results suggest the

following: (i) The null hypothesis of linearity is clearly rejected by almost all multivariate tests

at the significance level 0.05, regardless of the stopping rules used to determine the num-

ber of components and the group of economic variables. Put differently, a linear VAR/DSGE

model is clearly not an adequate representation for any sub-set of US variables. It is also

worth pointing out that the degree of rejecting the null hypothesis increases with the number

of variables included in the model (compare the results for the first and the last sub-set of US

variables); (ii) As in the case of Monte Carlo experiments, the univariate non-linearity tests do

produce misleading results, which can be easily illustrated using the last group of variables

y = (P,R,W,L,C, I)′. In this case, the null hypothesis of linearity is clearly rejected by all

multivariate tests at the significance level 0.05, regardless of the test configuration, whereas

only in 3 out of 6 variables when using univariate tests. This is a nice example illustrating how

difficult it might be to interpret the results from univariate non-linearity tests in the multivariate

context.

7. CONCLUSION
This paper addresses the issue of testing for linear and Markov-switching (non-linear) DSGE

models. Our Monte Carlo results show that univariate tests might not be adequate for test-

ing for non-linearity in economic variables, which are dependent (correlated/co-integrated) in

nature. The univariate tests suffer from a serious power distortion, and thus, may easily lead

to misleading inference. On the contrary, principal component based multivariate non-linearity

TSAY and ARCH tests exhibit good size and power properties for a given set of DSGE models.

Empirical results, based on three different sub-sets of US economic variables, indicate that

the null hypothesis of linearity is clearly rejected by all principal component based multivariate

non-linearity tests. Therefore, it can be concluded that the use of linear DSGE models such as

in Smets and Wouters (2007) is in sharp contrast with our findings, and, thus, unsuitable for

policy recommendations.
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APPENDIX A: WORKHORSE DSGE MODEL
We follow Liu et al. (2009) and consider a simple, yet realistic, DSGE model with nominal and

real frictions. The model describes the behaviour of three agents in the economy (i.e. house-

holds, firms, and government). It is assumed that the economy is populated by infinitely lived

households who consume and supply labour to firms. Households are assumed to maximize

an intertemporal CRRA utility function given by

E0

∞∑
t=0

βtAt

[
log(Ct − bC̄t−1)−

Ψ

1 + ξ
L1+ξ
t

]
, (13)

subject to the following budget constraint

P̄tCt +Bt = WtLt + (1 + rt−1)Bt−1 + Πt, (14)

where Ct denotes real consumption, C̄t−1 lagged aggregate real consumption, 0 < b < 1

represents habit formation, Lt denotes labour, At denotes a preference shock, Bt denotes a

state-contingent nominal bonds and rt the nominal interest rate, P̄t denotes the price level, Wt

denotes the nominal wage, and Πt the profit from firms. The parameter 0 < β < 1 represent the

discount rate, ξ > 0 the inverse Frisch elasticity of labour supply, and Ψ > 0 the relative weight

of labour in the utility function. The preference shock log(At) is assumed to follow an AR(1)

process for convenience: log(At) = ρa log(At−1) + εat such that 0 < ρa < 1 and εat ∼ IID(0, σ2a).

The final consumption good is produced in the perfectly competitive sector using differentiated

intermediate goods as inputs using the Dixit-Stiglitz aggregation technology

Ct =

[∫ 1

0
Yt(j)

θ−1
θ dj

] θ
θ−1

, (15)

with constant elasticity of substitution θ > 1. The perfect competition environment implies that

the aggregate price index is given

P̄t =

[∫ 1

0
Pt(j)

1−θdj
] 1

1−θ

. (16)

Firms are assumed to produce intermediate goods using a simple production technology given

by

Yt(j) = ZtLt(j)
α, (17)

where 0 < α < 1 is the production function parameter and Zt is an aggregate technology
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progress following a random walk with a drift log(Zt) = log(λ) + log(Zt−1) + log(vt), where

λ is a measure of deterministic trend of technological progress and log(vt) is a technological

innovation following a simple AR(1) process log(vt) = ρv log(vt−1)+εvt such that 0 < ρv < 1 and

εvt ∼ IID(0, σ2v). Firms are assumed to be price-takers in the input market and monopolistic

competitors in the product market. Only for simplicity of the model, firms are assumed to follow

a Calvo pricing mechanism. In each period, there is a probability ζ that firms cannot adjust

their output prices. However, firms that cannot adjust their prices are allowed to re-optimize

their prices using a simple indexation rule

Pt(j) = πγt−1π
ss(1−γ)Pt−1(j), (18)

where 0 ≤ γ ≤ 1 denotes the degree of indexation. If firms can reset their prices, the new price

Pt(j) follows from optimizing the expected discounted stream of dividends given by

Et
∞∑
i=0

ζiDt+i

[
Pt(j)χt+iYt+i(j)

d −Wt+i

(
Yt+i(j)

d

Zt+i

)1/α
]
, (19)

subject to the demand function

Yt(j)
d =

(
Pt(j)

P̄t

)−θ
Ct. (20)

The term χt+i comes from the price updating rule: χt+i = 1 for i = 0 and χt+i = πγt+i+1 · · ·π
γ
t π

ss(1−γ)i

for i > 0. Note that Dt+i = Πi
j=1(1 + rt+j)

−1 represents the stochastic discount factor.

The monetary authority is assumed to follow a simple policy rule in the model

rt = r + φp log(πt/π
ss) + φy log(Yt/Y

ss
t ) + ut, (21)

where πss and Y ss
t denote steady states, φp and φy denote policy parameters, ut represents a

monetary policy shock following an AR(1) process: ut = ρuut−1 + εut such that 0 < ρu < 1 and

εut ∼ IID(0, σ2u).
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APPENDIX B: LINEAR DSGE (L) MODEL
Keeping all the structural parameters constant, the log-linearized first-order conditions lead to

the following system of equations

π̂t = γπ̂t−1 + βEt(π̂t+1 − γπ̂t)+

+ ψ

[
ξ + 1

α
ŷt +

b

b+ λ
(ŷt − ŷt−1)

]
+ ψv̂t, (22a)

ŷt =

(
λ

λ+ b

)
Et(ŷt+1) +

(
b

λ+ b

)
ŷt−1 +

(
b− λ
λ+ b

)
(r̂t − Et(π̂t+1))+

+

(
λρv − b
λ+ b

)
v̂t + +

[
(λ− b)(1− ρa)

λ+ b

]
ât, (22b)

r̂t = φpπ̂t + φyŷt + ût, (22c)

where

ψ =
1

1 + θ(1− α)/α

(
(1− βζ)(1− ζ)

ζ

)
,

where π̂t denotes a deviation of the inflation rate from the (non-stochastic) steady state value,

ŷt denotes the output gap, and r̂t denotes a deviation of the short-term interest rate from its

(non-stochastic) steady state value, v̂t, ât, ût denote technology, preference, and monetary pol-

icy shocks. All shocks are assumed to follow an AR(1) model, where ρv, ρa, and ρu denote the

persistence (i.e. AR(1)) parameters of shock variables, and σ2v , σ2a, and σ2u denote variances of

shock innovations. The deep (structural) parameters, collected in a vector ω, have the following

meaning: β, represents the discount factor, b the habit formation of households, ξ the inverse

Frish elasticity of labour supply, λ steady state of technology progress, ζ probability that a firm

cannot reset its price, γ a fraction of firms following a simple indexation of prices, α production

function parameter, θ the elasticity of substitution among differentiated intermediate goods.

Uhlig (1995) shows that the model in (22) can be written into the following matrix form

yt = A(ω)Et(yt+1) + B(ω)yt−1 + C(ω)xt,

xt = Rxt−1 + εt,

where yt = (π̂t, ŷt, r̂t)
′ is a (3 × 1) vector of dependent variables, xt = (v̂t, ât, ût)

′ a vector of

shocks, and A(ω), B(ω), C(ω), R are (3× 3) matrices of structural (deep) parameters. Since

the above system is exactly identified, the state-space model can be further simplified into the

form of a VAR(2) model given by

yt = Φ1(ω)yt−1 + Φ2(ω)yt−2 + Θ(ω)εt. (23)
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The benchmark parameter configuration of deep parameters is as follows: β = 0.995, λ = 1.005,

α = 0.7, θ = 10, ξ = 2, b = 0.5, ρv = 0.95, ρr = 0.80, ρa = 0.70, φp = 1.8, φy = 0.4, ζ = 0.7,

γ = 0.7, σ2v = σ2a = σ2u = 0.1. The resulting reduced-form matrices of a linear DSGE model are

given by

Φ1(ω) =


1.60 −0.09 −0.01

0.03 0.93 −0.04

1.45 −0.11 0.77

 ,Φ2(ω) =


−0.62 0.01 0.00

0.02 −0.21 0.00

−1.11 −0.06 0.00

 ,Θ(ω) =


−0.27 0.06 0.36

−0.61 0.17 0.42

0.27 0.17 0.81

 .

APPENDIX C: MARKOV-SWITCHING DSGE
(MS) MODEL
It is important to point out that since some structural (deep) parameters of a DSGE model are

allowed to follow a Markov-switching process, the above derived first-order conditions are no

longer valid. Specifically, we replace the constant monetary policy parameters φp and φy in (21)

by the regime-dependent parameters φp(St) and φy(St), and the Phillips curve parameters γ

and ζ in (18) and (19) by γ(St−1) and ζ(St−1). A new set of first-order conditions is given by

π̂t = γ(St)π̂t−1 + βψ1(St, St−1)Et(π̂t+1 − γ(St)π̂t)+

+ ψ2(St−1)

[
ξ + 1

α
ŷt +

b

b+ λ
(ŷt − ŷt−1)

]
+ ψ2(St−1)v̂t, (24a)

ŷt =

(
λ

λ+ b

)
Et(ŷt+1) +

(
b

λ+ b

)
ŷt−1 +

(
b− λ
λ+ b

)
(r̂t − Et(π̂t+1))+

+

(
λρv − b
λ+ b

)
v̂t + +

[
(λ− b)(1− ρa)

λ+ b

]
ât, (24b)

r̂t = φp(St)π̂t + φy(St)ŷt + ût, (24c)

where

ψ1(St, St−1) =
ζ̄

ζ(St−1)

(
1− ζ̄

1− ζ(St)

)
,

ψ2(St−1) =
1

1 + θ(1− α)/α

(
(1− βζ̄)(1− ζ(St−1))

ζ(St−1)

)
.

where ζ̄ denotes the ergodic mean of the random variable ζ(St), π̂t denotes a deviation of the

inflation rate from the (non-stochastic) steady state value, ŷt denotes the output gap, and r̂t de-

notes a deviation of the short-term interest rate from its (non-stochastic) steady state value,v̂t,

ât, ût denote technology, preference, and monetary policy shocks. All shocks are assumed

to follow an AR(1) model. The deep (structural) parameters have the following meaning: β,

represents the discount factor, b the habit formation of households, ξ the inverse Frish elas-
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ticity of labour supply, λ steady state of technology progress, ζ probability that a firm cannot

reset its price, γ a fraction of firms following a simple indexation of prices, α production function

parameter, θ the elasticity of substitution among differentiated intermediate goods. St repre-

sents the first-order time-homogenous hidden Markov chain defined on a discrete space {1, 2}
with constant (irreducible and aperiodic) transition probabilities p11 = P(St = 1|St−1 = 1) and

p22 = P(St = 2|St−1 = 2).

Cho (2011) shows that the MS-DSGE model in (24) can be written as follows

yt = A(ωSt,St−1)Et(yt+1) + B(ωSt,St−1)yt−1 + C(ωSt,St−1)xt,

xt = Rxt−1 + εt,

where yt = (π̂t, ŷt, r̂t)
′ is a (3 × 1) vector of dependent variables, xt = (v̂t, ât, ût)

′ a vector

of shocks, and A(ωSt,St−1), B(ωSt,St−1), C(ωSt,St−1), are (3 × 3) matrices of structural (deep)

parameters subject to Markov-switching, whereas R is a (3 × 3) matrix of fixed parameters.

Cho (2011) also points out that the closed-form solution of the model, if it exists, can be written

into the form of a state-space representation. Since the above system is exactly identified, the

state-space model can be further simplified into the form of a MS-VAR(2) model given by

yt = Φ1(ωSt,St−1)yt−1 + Φ2(ωSt,St−1)yt−2 + Θ(ωSt,St−1)εt. (25)

APPENDIX C1: MS-DSGE (MS1) MODEL

In this particular case, only the monetary policy rule parameters are allowed to change over

time. The benchmark parameter configuration of deep parameters is as follows: β = 0.995,

λ = 1.005, α = 0.7, θ = 10, ξ = 2, b = 0.5, ζ = 0.7, γ = 0.7, ρv = 0.95, ρr = 0.80, ρa = 0.70, φp =

1.8, γ = 0.7, σ2v = σ2a = σ2u = 0.1, φp(St) ∈ {2.0, 1.0), φy(St) ∈ {0.5, 0.1), for St ∈ {1, 2}. The

transition matrix of the St variable is set as follows: p11 = 0.95 and p22 = 0.80, St = 1 represents

the expansion (active) regime, whereas St = 2 the recession (passive) regime. The calibrated

parameter are based on MS-DSGE models in Liu et al. (2009) and Liu and Mumtaz (2011). It

is important to emphasize that due to the fact that only the monetary policy rule parameters are

subject to a change (without any effect of intertemporal optimization), the reduced form MS-

DSGE parameters take the following functional form: Φ1(ωSt,St−1) ≡ Φ1(ωSt), Φ2(ωSt,St−1) ≡
Φ2(ωSt), and Θ(ωSt,St−1) ≡ Θ(ωSt), for St ∈ {1, 2}. The resulting reduced-form matrices are
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given by

Φ1(ω1) =


1.57 −0.08 −0.01

−0.08 0.94 −0.03

1.50 −0.10 0.77

 ,Φ1(ω2) =


1.74 −0.11 −0.01

0.48 0.88 −0.05

0.98 −0.10 0.79

 ,

Φ2(ω1) =


−0.60 0.01 0.00

0.10 −0.21 0.00

−1.16 −0.08 0.00

 ,Φ2(ω2) =


−0.71 0.02 0.00

−0.29 −0.22 0.00

−0.74 0.00 0.00

 ,

Θ(ω1) =


−0.26 0.06 0.36

−0.55 0.16 0.36

0.21 0.19 0.89

 ,Θ(ω2) =


−0.45 0.09 0.62

−1.08 0.27 0.99

0.44 0.12 0.72

 .

APPENDIX C2: MS-DSGE (MS2) MODEL

In the case of the MS2 model, the monetary policy rule parameters and the New Keynesian

Phillips curve parameters are allowed to change over time. The benchmark parameter con-

figuration of deep parameters is as follows: β = 0.995, λ = 1.005, α = 0.7, θ = 10, ξ = 2,

b = 0.5, ρv = 0.95, ρr = 0.80, ρa = 0.70, φp = 1.75, σ2v = σ2a = σ2u = 0.1, φp(St) ∈ {2.0, 1.0),

φy(St) ∈ {0.5, 0.1), ζ(St) ∈ {0.75, 0.25), γ(St) ∈ {0.75, 0.25) for St ∈ {1, 2}. The transition ma-

trix of the St variable is set as follows: p11 = 0.95 and p22 = 0.80, where St = 1 represents

the expansion (active) regime, whereas St = 2 the recession (passive) regime. The calibrated

parameter are based on MS-DSGE models in Liu et al. (2009) and Liu and Mumtaz (2011).

Only for simplicity, the reduced-form parameter matrices are reported for two most important

combinations of states: (St, St−1) = (1, 1) and (St, St−1) = (2, 2). The resulting reduced-form

matrices are given by

Φ1(ω1,1) =


1.65 −0.09 0.01

−0.31 0.77 0.20

3.16 0.20 0.12

 ,Φ1(ω2,2) =


1.38 −0.29 −0.01

−0.26 0.93 0.22

1.36 0.20 0.04

 ,

Φ2(ω1,1) =


−0.70 0.01 0.00

−0.09 −0.19 0.00

−1.45 −0.07 0.00

 ,Φ2(ω2,2) =


−0.42 0.05 0.00

0.04 −0.23 0.00

−0.42 0.02 0.00

 ,

Θ(ω1,1) =


−0.04 0.05 0.28

−0.32 0.17 0.45

0.75 0.18 0.79

 ,Θ(ω2,2) =


−0.15 0.24 1.65

−0.38 0.21 0.61

0.81 0.26 1.71

 .
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APPENDIX D: TABLES
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Table 1: Average rejection frequency of the non-linearity tests: T = 150

transformation 1 transformation 2 transformation 3
DGP tests config. TSAY n ARCH n TSAY n ARCH n TSAY n ARCH n
L multiv. M(BIC) 0.097 3.0 0.060 3.0 0.049 3.0 0.065 3.0 0.062 3.0 0.056 3.0

M(0.9) 0.092 3.0 0.057 3.3 0.047 4.1 0.064 3.4 0.061 4.9 0.054 3.3
M(K) 0.099 3.7 0.058 3.5 0.059 5.1 0.065 3.6 0.062 4.8 0.050 3.5

univ. π 0.023 – 0.058 – 0.027 – 0.045 – 0.033 – 0.050 –
y 0.037 – 0.051 – 0.046 – 0.051 – 0.040 – 0.048 –
r 0.024 – 0.053 – 0.029 – 0.054 – 0.040 – 0.062 –

MS1 multiv. M(BIC) 0.390 3.2 0.504 3.2 0.295 3.2 0.517 3.2 0.281 3.1 0.416 3.2
M(0.9) 0.354 3.1 0.515 4.5 0.264 4.1 0.508 4.3 0.336 5.7 0.414 4.2
M(K) 0.375 3.8 0.516 4.6 0.391 5.4 0.505 4.3 0.352 6.4 0.416 4.2

univ. π 0.216 – 0.423 – 0.210 – 0.430 – 0.167 – 0.398 –
y 0.345 – 0.526 – 0.300 – 0.355 – 0.288 – 0.335 –
r 0.261 – 0.615 – 0.263 – 0.606 – 0.413 – 0.643 –

MS2 multiv. M(BIC) 0.691 5.0 0.762 4.0 0.772 5.3 0.860 4.1 0.791 4.3 0.738 3.9
M(0.9) 0.577 3.2 0.753 4.2 0.663 4.1 0.865 4.1 0.850 5.7 0.737 4.1
M(K) 0.634 4.1 0.758 4.5 0.806 5.8 0.870 4.3 0.869 6.8 0.749 4.3

univ. π 0.548 – 0.758 – 0.559 – 0.770 – 0.345 – 0.574 –
y 0.397 – 0.661 – 0.602 – 0.819 – 0.608 – 0.834 –
r 0.259 – 0.441 – 0.249 – 0.463 – 0.267 – 0.535 –

* Note that “M(·)” denotes a multivariate version of either the TSAY or ARCH test. “n” denotes the average number of principal
components over all Monte Carlo replications. ”BIC” denotes the test with the number of principal components selected using the
BIC approach; ”0.9” denotes the test with the number of principal components selected using the variance rule with the cutoff 0.9;
”K” denotes the test with the number of principal components selected using the Kaiser (root) rule with the cutoff 1.0.
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Table 2: Average rejection frequency of the non-linearity tests: T = 300

transformation 1 transformation 2 transformation 3
DGP tests config. TSAY n ARCH n TSAY n ARCH n TSAY n ARCH n
L multiv. M(BIC) 0.073 3.0 0.076 3.0 0.047 3.0 0.051 3.0 0.061 3.0 0.066 3.0

M(0.9) 0.074 3.0 0.075 3.3 0.052 4.9 0.052 3.3 0.072 6.7 0.063 3.2
M(K) 0.076 3.5 0.077 3.4 0.055 6.1 0.049 3.5 0.060 6.5 0.064 3.4

univ. π 0.036 – 0.061 – 0.025 – 0.064 – 0.039 – 0.053 –
y 0.054 – 0.054 – 0.054 – 0.054 – 0.044 – 0.065 –
r 0.041 – 0.067 – 0.034 – 0.056 – 0.048 – 0.049 –

MS1 multiv. M(BIC) 0.371 3.1 0.687 3.3 0.280 3.1 0.697 3.3 0.307 3.0 0.523 3.2
M(0.9) 0.344 3.1 0.699 4.5 0.319 4.6 0.703 4.5 0.418 7.3 0.543 4.3
M(K) 0.373 3.7 0.700 4.5 0.438 6.2 0.696 4.5 0.429 7.6 0.543 4.2

univ. π 0.258 – 0.613 – 0.275 – 0.642 – 0.210 – 0.550 –
y 0.464 – 0.684 – 0.455 – 0.511 – 0.391 – 0.476 –
r 0.431 – 0.903 – 0.407 – 0.891 – 0.547 – 0.892 –

MS2 multiv. M(BIC) 0.702 4.4 0.936 4.5 0.761 4.8 0.967 4.7 0.778 3.9 0.898 4.4
M(0.9) 0.590 3.1 0.936 4.3 0.700 4.5 0.970 4.3 0.874 7.2 0.900 4.2
M(K) 0.633 3.9 0.937 4.8 0.846 6.5 0.974 4.6 0.883 8.4 0.907 4.6

univ. π 0.616 – 0.934 – 0.626 – 0.951 – 0.411 – 0.743 –
y 0.556 – 0.936 – 0.718 – 0.979 – 0.705 – 0.970 –
r 0.297 – 0.675 – 0.348 – 0.660 – 0.365 – 0.704 –

* Note that “M(·)” denotes a multivariate version of either the TSAY or ARCH test. “n” denotes the average number of principal
components over all Monte Carlo replications. ”BIC” denotes the test with the number of principal components selected using the
BIC approach; ”0.9” denotes the test with the number of principal components selected using the variance rule with the cutoff 0.9;
”K” denotes the test with the number of principal components selected using the Kaiser (root) rule with the cutoff 1.0.
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Table 3: P-values of the non-linearity tests

univariate tests multivariate tests
tests/variables Y P R W L C I y =(Y,P,R) n
TSAY 0.760 0.028 0.000 – – – – – –
MTSAY(BIC) – – – – – – – 0.052 3
MTSAY(0.9) – – – – – – – 0.000 8
MTSAY(K) – – – – – – – 0.000 8
ARCH 0.318 0.908 0.000 – – – – – –
MARCH(BIC) – – – – – – – 0.199 3
MARCH(0.9) – – – – – – – 0.001 6
MARCH(K) – – – – – – – 0.305 4
tests/variables Y P R W L C I y =(Y,P,R,W,L) n
TSAY 0.760 0.028 0.000 0.167 0.005 – – – –
MTSAY(BIC) – – – – – – – 0.002 5
MTSAY(0.9) – – – – – – – 0.000 15
MTSAY(K) – – – – – – – 0.000 21
ARCH 0.318 0.908 0.000 0.001 0.001 – – – –
MARCH(BIC) – – – – – – – 0.012 5
MARCH(0.9) – – – – – – – 0.000 14
MARCH(K) – – – – – – – 0.000 10
tests/variables Y P R W L C I y =(P,R,W,L,C,I) n
TSAY – 0.028 0.000 0.167 0.005 0.106 0.713 – –
MTSAY(BIC) – – – – – – – 0.000 6
MTSAY(0.9) – – – – – – – 0.000 17
MTSAY(K) – – – – – – – 0.000 21
ARCH – 0.908 0.000 0.001 0.001 0.133 0.457 – –
MARCH(BIC) – – – – – – – 0.001 6
MARCH(0.9) – – – – – – – 0.000 19
MARCH(K) – – – – – – – 0.000 12
a “Y” denotes the growth rate of the real GDP series, “C” the growth rate of real consumption, “I” the growth rate of

real investment, “P” the CPI inflation rate, “R” the 3M treasure bill rate, “W” the growth rate of nominal hourly wage,
and “L” growth rate of hours worked.

b Note that “M(·)” denotes a multivariate version of either the TSAY or ARCH test. “n” denotes the number of principal
components. ”BIC” denotes the test with the number of principal components selected using the BIC approach; ”0.9”
denotes the test with the number of principal components selected using the variance rule with the cutoff 0.9; ”K”
denotes the test with the number of principal components selected using the Kaiser (root) rule with the cutoff 1.0.
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